Grant Lake Infrastructure and **Operations**

July 7-8, 2014

MCMILLEN

In Association with

DESIGN with Vision. BUILD with Integrity.

Presentation Outline

- Review the Proposed Infrastructure and Layout
- Review the Updated Hydrologic Analysis
- Review the Updated Hydraulic Analysis
- Present the Operating Assumptions
- Present the Operational/Generation Model
- Review the Operational/Generation Model Results
- Discuss any Additional Engineering Questions

Proposed Infrastructure

- An intake structure in Grant Lake.
- A tunnel extending from the lake intake to just east of the powerhouse.
- A penstock and surge tank located at the west end of the tunnel.
- A powerhouse with two Francis turbines providing an anticipated combined 5-Megawatt output. The maximum design flow will be approximately 385 cfs.
- Tailrace channel returning powerhouse flow to Grant Creek.

Proposed Infrastructure - continued

- Tailrace detention pond and return channel.
- Switchyard with disconnect switch and step-up transformer.
- An overhead or underground transmission line.
- A pole mounted disconnect switch where the transmission line intersects the main power distribution line.
- Access road from the Seward Highway to the powerhouse and extending up to the intake structure.

Grant Creek Project Layout

Hydrologic Analysis Review

- 66-year 'composite' daily streamflow record developed for Grant Creek
 - Calendar Years 1948-2013
 - USGS gage record
 - Intermittent streamflow records from engineering studies
 - Record extension based on Kenai River at Cooper Landing
- Used for Hydraulic, Generation, and Habitat Analyses
- Summarized in Technical Memo 001: Grant Creek
 Hydrologic Analysis

Hydrologic Analysis Review

 Technical Memo 001: Grant Creek Hydrologic Analysis

Hydraulic Analysis Review

- HEC-RAS model geometry developed based on IFIM cross sections.
- Flood flows based on from hydrologic analysis.
- Tailwater elevations computed for the tailrace location.

Hydraulic Analysis Review

 Technical Memo 002: Grant Creek Hydraulic Analysis

Operating Assumptions

- Assuming no dam, natural storage only
- Reservoir Operating Range: 703-690 feet (13 feet)
- Approximate Tailwater Elevation: 518 feet
- Peak Powerhouse Discharge: 385 cfs
- Minimum Powerhouse Discharge: 23 cfs
- Turbines: 1 MW and 4 MW Francis Units
- Instream Flow Releases in Reach 5:
 - 10 cfs during Chinook spawning (Aug Sept)
 - 7 cfs during Coho spawning (Sept Oct)
 - 5 cfs for the remainder of the year

Operating Assumptions

Operational/Generation Model

- Developed to estimate energy production under various operational scenarios
- Utilizes composite streamflow record to calculate daily power production
- Includes instream flow requirements
- Allows powerhouse size and unit configuration to be varied as well as tunnel and penstock size optimization

Operational/Generation Model

1	GRANT CREEK HYDROELECTRIC PROJECT					Two 2.5 MW Units - Operation Efficiency					
2	PLANT ENERGY OUTPUT MODEL - Drawdown					1 and 4 MW Units - Operation Efficiency : Prioritized 4MW Unit Operating					
2	repared log 2014 by Andre Ball, McMillon LLC		uomn			1 and 4 MW U	nits - Operation Ef	ficiency : Prioritized	4MW Unit Ope	erating	
3	Srepared Jan 2014 by Andre Ball, Michillen-LLC										-
- 4						Efficiency T	able (combine	d)		2	
6						1 and 4 MW	Units Opera	tion Efficiency	· Prioritized	4 4MW Unit	Operating
7	Variables Table, change here and	they change	throughou	t		T und 4 MV	Unit 1	Init 2	Unit 1	Init 2	operading
8	the whole spreadsheet	they change	anougnou			Total Load	1 MW	4 MW	1 MW	4 MW	
9	Plant Capacity (kW)	(computed)	4974 7			%	% Total Load	% Total Load	Efficiency	Efficiency	
10	Starting Reservoir Elev (ft NAVD88)	(compared)	703			0%	0%	0%	0 0000	0.0000	0.0
11	Average tailwater Elev. (ft. NAVD88)		518.5		184.5	6%	6%	0%	0.3319	0.0000	23.1
12	Plant Full Load Flow (cfs)		385.0			8%	8%	0%	0.5744	0.0000	30.8
13	Full Load headloss in Penstock (ft)		13.39			10%	10%	0%	0.7726	0.0000	38.5
14	Maximum Drawdown (ft)		13			12%	12%	0%	0.8032	0.0000	46.2
15	Number Hours per day on peak		16			14%	14%	0%	0.8581	0.0000	53.9
16	Number Hours per day off peak		8			16%	16%	0%	0.8785	0.0000	61.6
17	Starting Reservoir Volume Ac ft		18791			18%	18%	0%	0.8895	0.0000	69.3
18	Run turbine off peak if intake pond is a	above el.	690	feet and		20%	20%	0%	0.8911	0.0000	77.0
19	and inflow rate is above 30% of small	and inflow rate is above 30% of smallest unit				24%	0%	24%	0.0000	0.3319	92.4
20	Revenue- Energy Price		not used	\$USD		32%	0%	32%	0.0000	0.5744	123.2
21	Estimated % downtime, annual average	Estimated % downtime, annual average				40%	0%	40%	0.0000	0.7726	154.0
22	Estimated Station Service average loa	Estimated Station Service average load				48%	0%	48%	0.0000	0.8032	184.8
23	Transformer and T-line losses	Transformer and T-line losses				56%	0%	56%	0.0000	0.8581	215.6
24	Mean Annual Run-off (cfs)	207	IFR	1		64%	0%	64%	0.0000	0.8785	246.4
25		% of MAR	cfs			72%	0%	72%	0.0000	0.8895	277.2
26	Instream Flow Release (cfs) Jan	2%	5.00			80%	0%	80%	0.0000	0.8911	308.0
27	Instream Flow Release (cfs) Feb	2%	5.00			86%	6%	80%	0.3319	0.8911	331.1
28	Instream Flow Release (cfs) Mar	2%	5.00			96%	16%	80%	0.8785	0.8911	369.6
29	Instream Flow Release (cfs) April	2%	5.00			100%	20%	80%	0.8911	0.8911	385.0
30	Instream Flow Release (cfs) May	2%	5.00								
31	Instream Flow Release (cfs) June	2%	5.00			Grant Lake	Stage-Storage	Relationship			
32	Instream Flow Release (cfs) July	2%	5.00					Slope	Intercept		
33	Instream Flow Release (cfs) Aug	5%	10.00			Vol (AF) -> E	lev (ft)	0.000692	690		
34	Instream Flow Release (cfs) Sept 1-7	5%	10.00			Elev (ft) -> V	ol (AF)	1445.5	-997364		
35	Instream Flow Release (cfs) Sept 8-30	0 3%	7.00					A 1: 1/1/17			
36	Instream Flow Release (cfs) Oct	2%	5.00				Elev (tt)	Active Vol (AF)	40704	6/1	
3/	Instream Flow Release (cfs) Nov	2%	5.00			Iviax (2' dam	/05	21682	18791	ac-ft/day->	CTS
38	Instream Flow Release (cfs) Dec	2%	5.00			IVIAX (Natura	/03	18/91		1.9834711	
39						IVIII (11' Draf	692	2891			
40						Iviin (13' Draf	690	0			
H.	▶ ▶ Grant Creek Flow Data / Efficiency and HL	H calcs / He	ad Loss / IF	R / Rule Cur	ve Energ	v Macro / M	acro Summary	Flow Analysis	/ 🔁 /		

Ready 🔚

Generation Model Results

- Energy Production :19,500 MW-Hours Annually (based on Average Daily Flows)
- Plant Factor: 0.45

Project Alteration to Streamflows

Next Steps

- Refine operational model based upon dialogue today
- Continue infrastructure design tasks to support DLA submittal

Questions/Comments